skip to main content


Search for: All records

Creators/Authors contains: "Jamshidi, Pooyan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The design of machine learning systems often requires trading off different objectives, for example, prediction error and energy consumption for deep neural networks (DNNs). Typically, no single design performs well in all objectives; therefore, finding Pareto-optimal designs is of interest. The search for Pareto-optimal designs involves evaluating designs in an iterative process, and the measurements are used to evaluate an acquisition function that guides the search process. However, measuring different objectives incurs different costs. For example, the cost of measuring the prediction error of DNNs is orders of magnitude higher than that of measuring the energy consumption of a pre-trained DNN as it requires re-training the DNN. Current state-of-the-art methods do not consider this difference in objective evaluation cost, potentially incurring expensive evaluations of objective functions in the optimization process. In this paper, we develop a novel decoupled and cost-aware multi-objective optimization algorithm, which we call Flexible Multi-Objective Bayesian Optimization (FlexiBO) to address this issue. For evaluating each design, FlexiBO selects the objective with higher relative gain by weighting the improvement of the hypervolume of the Pareto region with the measurement cost of each objective. This strategy, therefore, balances the expense of collecting new information with the knowledge gained through objective evaluations, preventing FlexiBO from performing expensive measurements for little to no gain. We evaluate FlexiBO on seven state-of-the-art DNNs for image recognition, natural language processing (NLP), and speech-to-text translation. Our results indicate that, given the same total experimental budget, FlexiBO discovers designs with 4.8% to 12.4% lower hypervolume error than the best method in state-of-the-art multi-objective optimization. 
    more » « less
    Free, publicly-accessible full text available May 6, 2024
  2. Free, publicly-accessible full text available July 1, 2024
  3. Free, publicly-accessible full text available May 8, 2024
  4. Machine learning system design frequently necessitates balancing multiple objectives, such as prediction error and energy consumption, for deep neural networks (DNNs). Typically, no single design performs well across all objectives; thus, finding Pareto-optimal designs is of interest. Measuring different objectives frequently incurs different costs; for example, measuring the prediction error of DNNs is significantly more expensive than measuring the energy consumption of a pre-trained DNN because it requires re-training the DNN. Current state-of-the-art methods do not account for this difference in objective evaluation cost, potentially wasting costly evaluations of objective functions for little information gain. To address this issue, we propose a novel cost-aware decoupled approach that weights the improvement of the hypervolume of the Pareto region by the measurement cost of each objective. To evaluate our approach, we perform experiments on several machine learning systems deployed on energy constraints environments. 
    more » « less
  5. Machine learning system design frequently necessitates balancing multiple objectives, such as prediction error and energy consumption for deep neural networks (DNNs). Typically, no single design performs well across all objectives; thus, finding Pareto-optimal designs is of interest. Measuring different objectives frequently incurs different costs; for example, measuring the prediction error of DNNs is significantly more expensive than measuring the energy consumption of a pre-trained DNN because it requires re-training the DNN. Current state-of-the-art methods do not account for this difference in objective evaluation cost, potentially wasting costly evaluations of objective functions for little information gain. To address this issue, we propose a novel cost-aware decoupled approach that weights the improvement of the hypervolume of the Pareto region by the measurement cost of each objective. We perform experiments on a of range of DNN applications for comprehensive evaluation of our approach. 
    more » « less
  6. Software developed in different platforms has different characteristics and needs. More specifically, code changes are differently performed in the mobile platform compared to non-mobile platforms (e.g., desktop and Web platforms). Prior works have investigated the differences in specific platforms. However, we still lack a deeper understanding of how code changes evolve across different software platforms. In this paper, we present a study aiming at investigating the frequency of changes and how source code changes, build changes and test changes co-evolve in mobile and non-mobile platforms. We developed linear regression models to explain which factors influence the frequency of changes in different platforms and applied the Apriori algorithm to find types of changes that frequently occur together. Our findings show that non-mobile repositories have a higher number of commits per month compared to mobile and our regression models suggest that being mobile significantly impacts on the number of commits in a negative direction when controlling for confound factors, such as code size. We also found that developers do not usually change source code files together with build files or test files. We argue that our results can provide valuable information for developers on how changes are performed in different platforms so that practices adopted in successful software systems can be followed. 
    more » « less